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Abstract

Large software development projects receive a large number of bug reports every day. Bug

triage is a process where issues are screened and prioritized. Bug triage takes significant

time and resources. For reducing the workload of project members, researchers have pro-

posed using assignment recommenders.

As the creation of bug report assignment recommenders is complex, we propose a web-

based tool called the Creation Assistant for Supporting Triage Recommenders (CASTR) to

assist the project members with the creation of assignment recommenders. CASTR assists a

user in labeling and filtering the bug reports used for creating a project-specific assignment

recommender.

As the field study results present, recommenders can be created with good accuracy

using CASTR such as 50-95% for Top-1 recommendations, 20-80% for Top-3 recommen-

dations and 10-70% for Top-5 recommendations. Most participants (60%) found CASTR

easy to use and were very likely to recommend CASTR for creating an assignment recom-

mender.
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Chapter 1

Introduction

In the era of agile software development, there are many things to handle collaboratively in

a software development project, such as the development of a new feature, improvements to

existing functionality or providing the resolution to an issue. Most software development

projects use a software tool to track all changes made during the software development

life cycle. This kind of tool is known as an Issue Tracking System or Bug Tracking System.

Anvik et al. [2] have shown that the use of an issue tracking system makes a software project

more manageable, especially when team members are geographically distributed. Issue

tracking systems are used to help simplify these processes; they are dedicated platforms

which enable teams to track projects from kick-off to delivery, or from identifying a bug to

its resolution.

A large software development project receives a large number of bug reports every day,

and the number of bug reports that need to be managed can become overwhelming [2].

When a new bug report is introduced into a software development project, it goes through

different phases of the bug report life cycle. Each report must be examined to decide how

the request will be handled by the project members. This decision process is called bug

report triage and must be done for all incoming reports [1, 2]. In situations where a bug

report needs a developer’s consideration, a decision needs to be made about to whom the

work will be assigned. An assignment decision can be made using bug report history,

similar bug reports fixed by the developer, or other relevant parameters such as impacted

component, Severity and Priority.

1
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Bug triage takes significant time and resources [12]. Also, it is a tedious job to assign

bug reports manually to the individual developers based on the view of the developer’s

ability or their bug fixing history. For reducing the workload of project members, bug

report assignment recommenders have been proposed [2, 5, 17, 18, 30]. The creation of

such recommenders for a specific software development project is a complex process as

project members have to perform many steps such as data preparation, selection of machine

learning algorithm and recommender creation.

Figure 1.1: Recommender creation pro-
cess.

To begin with the recommender creation

process (See Figure 1.1), the first step is for the

project members to extract data from the set of

bug reports. Next the data needs to be processed

such as selecting only nouns from the bug re-

ports description, removing stop words, setting

a minimum threshold value to eliminate bug re-

ports of developers who have fixed a small num-

ber of reports and are not appropriate for recom-

mendation. After applying a filter to the dataset,

the project members must label each bug report.

For example, bug reports marked as Fixed will

be labeled with the name of the last developer

to attach a patch so that at the time of classifi-

cation the machine learning algorithm will clas-

sify the bug report based on label. Labeling is a

required stage of data preprocessing in the rec-

ommender creation with supervised learning al-

gorithms. Labelers must be extremely attentive

because each mistake or inaccuracy negatively

2
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affects a dataset’s quality and the overall performance of a predictive model. After label-

ing, another key decision a project member has to make is the choice of a machine learning

algorithm. In the last step, project members create the recommender and determine if the

recommender works well. The creation of such recommenders for a specific software de-

velopment project is challenging. Creating an assignment recommender can take many

hours to days or weeks for someone who is unfamiliar with the process [1] given in Figure

1.1. For example, project members need to know machine learning algorithms, how the

reports are labelled with developer names affects the set of names recommended, and the

choice of valid names affects which reports and how many of them will be used for creating

the recommender.

This dissertation presents a web-based tool called the Creation Assistant for Supporting

Triage Recommenders (CASTR) to assist the project members with the creation of assign-

ment recommenders. This thesis makes the following contributions:

1. We propose a platform-independent web-based tool that provides the following:

(a) Allows a project member to analyze the dataset using a graphical representation.

(b) Assists a project member in configuring project-specific parameters when cre-

ating a recommender.

(c) Allows a project member to create an assignment recommender with the ma-

chine learning algorithm chosen by them.

(d) Allows a project members to select a technique to handle the class-data imbal-

ance issue.

(e) Allows a project members to compare the last five recommenders created.

2. We implemented three different algorithms to handle class data imbalance issue:

oversampling using SMOTE (Synthetic Minority Over-sampling Technique), under-

sampling using clusters and manual oversampling.

3
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3. We compare the processing time of recommenders created by CASTR with recom-

menders tuned by hand.

4. We show, through analytical evaluations that recommenders can be created with good

accuracy using machine learning algorithms.

5. We presents a field study showing how CASTR is used by professional developers

and works in practice.

Using CASTR, we expect that a project member will be able to use their project knowl-

edge to create an assignment recommender in a short period of time. Our main goal in

creating CASTR is to understand the use of recommender creation systems for bug report

assignment in practice.

CASTR is a platform-independent multi-tier web application with separate presentation

and application layers. CASTR presents developer activity profiles and bug report state

distributions, as well as the choice of four machine learning algorithms (SVM, Naive Bayes,

C4.5, and Rule-based) for tuning the creation of the recommender.

1.1 Outline

The remainder of this thesis proceeds as follows. In the next chapter we provide in-

formation on bug reports, the lifecycle of a bug report, machine learning algorithms and

RESTful APIs. The third chapter presents information on similar tools and related work

done in the past. In the fourth chapter, we provide a more detailed background of our

approach to assist with triage recommender creation and we explain about CASTR’s func-

tionality.

We explain our evaluation technique for CASTR in chapter five with presenting analyti-

cal and field study results. We then discuss various questions raised based on the field study

result before making our concluding remarks and discussing future directions of study.

4
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Chapter 2

Background

This section presents background information about bug reports, their life cycles, machine

learning and recommendation systems in software engineering.

2.1 Recommendation Systems in Software Engineering

Recommendation systems in software engineering (RSSEs), are software applications

that help to make a software engineering decision by providing a relevant suggestion on

how to proceed. Recommendation systems are frequently used to derive contextualized

recommendations for a variety of tasks. Given the wide variety of structured artifacts gen-

erated while generating software, recommendation systems have the opportunity to help

developers complete their tasks.

Dumitru et al. [14] present that the field of recommender systems has been studied

extensively, but mostly within the context of e-commerce systems, where numerous al-

gorithms have been developed to model user preferences and create predictions. These

algorithms vary greatly, depending on the type of data they use as input to create the rec-

ommendations. For example, some use content information about the items [24], or col-

laborative data of other user ratings [29], or knowledge rules of the domain [10], or hybrid

approaches [11].

RSSEs have emerged to assist software developers in various activities from reusing

code to writing effective bug reports [27]. In bug report triage, recommender systems can

discover related or duplicate issue reports, help to find a suitable developer to assign to a

5
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bug report [3] and recommend source code to use for implementing features in a project.

2.2 Bug Reports

In software development, a bug is an error, a flaw, or a failure that produces an incorrect

or unexpected result. Basically, a software bug is something where the software is not

working as expected. A bug report, also known as a change request or issue report, is a

document which contains a description of the behaviour caused by a fault in the software.

A bug report is an efficient form of communication between users and members of the

software project. Bug reports contain a variety of information such as a bug report identifier,

a summary of the problem (often as a title), a description of how to reproduce the problem,

a report creation timestamp, and the report’s current status. A bug report may contain

attachments or links to other related reports.

All bug reports have a lifecycle. It starts when a description of a bug is entered into

the project’s issue tracking system and ends when a bug report is closed. The bug report

life cycle has many states. In general, bug reports follow the states given in Figure 2.1, but

projects commonly add or remove states to fit their specific development process.

1. New: When a bug enters into the tracking system.

2. Assigned: The report has been assigned to a developer.

3. Resolved: There are many different ways that a report can be resolved, such as the

developer making changes to the code (FIXED), identifying that the problem has

already been reported (DUPLICATE), the request will not be addressed (WONTFIX),

the described problem cannot be reproduced (WORKSFORME), or the problem is

outside the scope of the project (INVALID).

4. Verified: This state indicates an independent verification of the fix by someone other

than the developer. If a bug still exists then it will be reopened otherwise it will be

closed.

6
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Figure 2.1: Default lifecycle of a Bugzilla bug report.

5. Reopen: The report didnot pass verification, or the problem returned in a later release.

6. Closed: Once the report has been verified, the bug report will be closed.

2.3 Bug Report Triaging Workflow

Bug report triage is a process where issues are screened, prioritised and assigned a de-

veloper. For a given bug report, identifying an appropriate developer who could potentially

fix the bug is the primary task of a bug triaging process. Each project follows their own

method to deal with bug triaging.

7
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Figure 2.2: Bug report triage workflow of KDE open source project.

Figure 2.2 shows the optimal bug triaging workflow from the KDE project1. Before

putting any effort into the newly introduced bug report, first the triager should check for

an existing report. If triager finds a pre-existing bug report describing the same issue,

mark the new bug report as a duplicate of it and merge the bug report with duplicate of

bug report. The second step for the triager is to identify bugs caused by external issues.

For example, the KDE app may experience an issue, but only when using the proprietary

NVIDIA driver. The third step for the triager is to ask for any missing information if all the

needed information is not provided. In the fourth step, a triager should use the information

provided by the reporter and try to reproduce the bug on their own system. If the triager

1https://community.kde.org

8
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cannot reproduce the bug under any circumstances then they should ask the reporter for

feedback or more information. In the last step, triager should provide useful information

to the developers. For example, custom input data, environment and circumstances under

which developer can reproduce the bug.

2.4 Machine Learning Algorithms

Arthur Samuel [28] in 1959 defined machine learning as the “field of study that gives

computers the ability to learn without being explicitly programmed.” Machine learning

explores the study and construction of algorithms to make predictions on input data with

the use of statistical analysis. Machine learning algorithms are classified into three different

categories: supervised, unsupervised and reinforcement. In this work, we will primarily

focus on supervised learning.

In supervised learning, a machine learning algorithm is trained on a training set [7]. The

process to learn the general rules is known as training the recommender. The algorithm will

apply the same rules derived from the training set to all of the other data. Working with a su-

pervised machine learning algorithm requires an understanding of three concepts: feature,

instance, and class. A feature is a property or characteristic which is used to determine the

class. Features are extracted from the training data instances such as text, numbers, or nom-

inal values in the description of bug reports. An instance is a group of features that have

specific values such as a description of a bug report. A class is a collection of instances

which belong to the same category such as bug reports fixed by a specific developer. In

supervised learning, each training instance is labeled with their class, which for bug report

assignment is the name of the developer that is believed to have fixed the bug. In CASTR,

we have used the following machine learning algorithms (SVM, Naive Bayes, C4.5, and

Rule-based).

In unsupervised learning, all data is unlabeled and the algorithms learn the inherent

structure from the input data. We use one of the most common algorithms Expectation-
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(a) Possible hyperplanes (b) Optimal hyperplane

Figure 2.3: Hyperplane in 2-dimensional space.

maximization in unsupervised learning to handle imbalanced data.

2.4.1 Support Vector Machines

A support vector machine (SVM) [25] constructs a hyperplane or set of hyperplanes in

a N-dimensional space. A SVM draws a decision boundary as given in the Figure 2.3(b),

which is also known as hyperplane which segregates the distinct classes in N-dimensional

space.

To illustrate a SVM, we use an example of a linear dataset of bug reports and seek to

classify whether a new bug report is to be fixed by developers Kim or James. The developers

names are represented by the shapes (Kim (circle) and James (square)). So how do we

decide where to draw our decision boundary? We can draw it at many places as given in the

Figure 2.3(a). Any of these would be fine, but what would be the best? If we do not have the

optimal decision boundary we could classify a bug report. Therefore, we draw an arbitrary

separation line and we use intuition to draw it somewhere between the solid blue circle and

the solid red square data point for both of the developer classes as given in the Figure 2.3(b).

The solid blue circle and solid red square are the extreme data points called support vectors.

Support vectors are data points that are closer to the hyperplane and influence the position
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and orientation of the hyperplane. Using these support vectors, we maximize the margin

of the classifier. The larger the maximum margin,the better the classifier output would be.

The algorithm implies that only the support vectors are important whereas other training

data points are ignorable.

2.4.2 Naive Bayes

Naive Bayes [20] is a simple technique for constructing a classifier using Bayes’ the-

orem, which is also known as Bayes’ law or Bayes’ rule. Bayes’ theorem describes the

probability of an event, based on prior knowledge of the conditions that might be related to

the event. The core equation for the Bayes’ theorem is:

P(A | B) = P(B | A)P(A)
P(B)

(2.1)

where A and B are events and P(B) 6= 0.

1. P(A | B) is a conditional probability: the likelihood of event A occurring given that B

is true.

2. P(B | A) is also a conditional probability: the likelihood of event B occurring given

that A is true.

3. P(A) and P(B) are the probabilities of observing A and B independently of each

other; this is known as the marginal probability.

To demonstrate the concept of Naive Bayes classification, consider the example of bug

reports given in the Figure 2.4(a). As indicated, the report can be classified as either devel-

oper Kim or James. Our task is to classify new bug reports based on the report summary

text (i.e., decide to which class label the bug report belong). Since there can be many re-

ports fixed by each developers, it is reasonable to believe that a new report is given to the

developer Kim who has fixed twice as many reports as James in the past with the similar

11
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(a) Bug reports fixed by developer Kim
and James.

(b) Classify new bug report belongs to
Kim or James?

Figure 2.4: Naive Bayes classification

text given in the report summary. In the Bayesian analysis, this belief is known as the prior

probability. We must first find prior probabilities for each class. Prior probabilities are

based on previous experience.

Prior Probability f or Kim =
#o f reports f ixed by Kim

# o f total reports
(2.2)

Prior Probability f or James =
# o f reports f ixed by James

# o f total reports
(2.3)

After formulating the prior probability, now we can classify a new report (represented by

the solid black triangle shape in the Figure 2.4(b)). Since the bug reports are well clustered,

it is reasonable to assume that the more reports fixed by Kim in the vicinity of “X”, the more

likely that the new report belongs to that particular developer. To measure this likelihood,

we draw a circle around X which encompasses a number of points irrespective of their class

labels. Then we calculate the number of points in the circle belonging to each class label.

From this we calculate the likelihood:
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Likelihood o f new report given to Kim =
# o f reports f ixed by Kim in the vicinity o f X

# o f reports f ixed by Kim

(2.4)

Likelihood o f new report given to James =
# o f reports f ixed by James in the vicinity o f X

# o f reports f ixed by James

(2.5)

From the illustration above, it is clear that the likelihood of X given Kim (P(X | Kim)) is

smaller than the likelihood of X given James (P(X | James)), since the circle encompasses 1

report fixed by Kim and 3 reports fixed by James. Although the prior probabilities indicate

that X may belongs to Kim, the likelihood indicates otherwise; that the class membership

of X is James (given that there are more bug reports fixed by James in the vicinity of X

than Kim). In the Bayesian analysis, the final classification is produced by combining both

sources of information, i.e., the prior and the likelihood, to form a posterior probability

using Bayes’ rule. As per the equation below, we classify that the new report belongs to

James since its class membership achieves the largest posterior probability.

Posterior probability o f Kim = Prior Probability o f Kim×Likelihood o f Kim (2.6)

Posterior probability o f James = Prior Probability o f James×Likelihood o f James

(2.7)

2.4.3 C4.5 Decision Tree

Quinlan [26] presents the classification algorithm C4.5 which generates a decision tree

using attributes values of instances for the given dataset. The construction of decision
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Figure 2.5: Example of a Decision Tree.

tree classifiers does not require any prior knowledge or parameter setting, and therefore is

appropriate for exploratory knowledge discovery [16]. Decision trees can handle multidi-

mensional data. Their representation of acquired knowledge in tree form is intuitive and

generally easy to understand by humans.

C4.5 is a greedy algorithm in which decision trees are constructed in a top-down re-

cursive manner using the concept of information entropy. The algorithm starts with the

root node by selecting an attribute from the given instances. The selection criteria of the

attribute depends on the information gain. The attribute with the highest information gain

is deemed the best choice. Then it creates branches for each possible attribute values. Fur-

ther, it splits instances into subsets recursively until all instances reach a leaf node. The leaf

nodes represents the classes.

Figure 2.5 shows an example of a top part of a decision tree created for assiging bug

reports to a developer using the KDE project dataset. The example shows that the C4.5

algorithm chose the Product attribute as root node of the tree. Depending on the value of
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the product in the bug report, one of three paths is followed. If the product is Plasmashell,

it will again follow one of three paths depending on the value of the component field. If

the component is Application Menu then it is checking whether the new bug report is a

type of bug or a feature request. If the type is Bugs then the bug report is assigned to Kim

otherwise it is assigned to James. If the product type is Dolphin then the report is assigned

to Tim. For the component Task Manager, the path is followed by more levels to decide

whom to assign the bug report. The leaf nodes are the developer names to be assigned to a

bug report.

2.4.4 Rules

In rule-based classifiers, a trained model is represented as a set of IF-THEN rules. The

IF part of a rule is known as the rule antecedent or precondition and the THEN part is the

rule consequent. In the rule antecedent, the condition consists of one or more attribute tests

that are logically ANDed. The rules consequent contains a class prediction. If the condition

(i.e., all the attribute tests) in a rule antecedent holds true for a given instance, we say that

the rule antecedent is satisfied. For example:

R1: IF product = Plasmashell AND component = Folder THEN assign report = Alex

Rules can be generated, either from a decision tree or directly from the training data using a

sequential covering algorithm. In comparison with a decision tree, the IF-THEN rules may

be easier for humans to understand, particularly if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root

to a leaf node. Each splitting criterion along a given path is logically ANDed to form the

rule antecedent. The leaf node holds the class prediction, forming the rule consequent. A

disjunction is implied between each of the extracted rules. Because the rules are extracted

directly from the tree, they are mutually exclusive and exhaustive. Mutually exclusive

means that we cannot have rule conflicts here because no two will be triggered for the same

instance. Exhaustive means there is one rule for each possible attribute value combination,

15



www.manaraa.com

2.5. RESTFUL APIS

so that this set of rules does not require a default rule. Therefore, the order of the rules does

not matter. The following are some of the rules extracted from the example of a decision

tree given in Figure 2.5,

R2: IF product = Konsole AND component = Bookmark THEN assign report = Dave

R3: IF product = Dolphin THEN assign report = Tim

R4: IF product = Plasmashell AND component = Application Menu AND type = Bugs

THEN assign report = Kim

2.4.5 Expectation-maximization

An expectation-maximization (EM) algorithm is a framework that approaches Maxi-

mum Likelihood (ML) or maximum a posteriori estimates of parameters in statistical mod-

els. Expectation-maximization algorithms can be used to compute fuzzy clustering and

probabilistic model-based clustering. The EM algorithm is an efficient iterative procedure

to compute the ML estimate in the presence of missing or hidden data. Each iteration of the

EM algorithm consists of two processes: The E-step, and the M-step.

1. In the expectation, or E-step, the missing data are estimated given the observed data

and current estimate of the model parameters. This is achieved using the conditional

expectation, explaining the choice of terminology.

2. In the M-step, the likelihood function is maximized under the assumption that the

missing data are known. The estimate of the missing data from the E-step are used in

lieu of the actual missing data.

We use the EM algorithm as the basis of unsupervised learning of clusters. We im-

plemented a method for under-sampling a dataset using the EM algorithm by removing

some of the bug reports in the majority class. EM assigns a probability distribution to each

instance which indicates the probability of it belonging to each of the clusters.
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Figure 2.6: CASTR application structure.

2.5 RESTful APIs

REST stands for Representational State Transfer, a term coined by Roy Fielding [15]. It

is an architecture style for designing loosely coupled applications over HTTP, that is often

used in the development of web services. REST does not enforce any rule regarding how

it should be implemented at a lower level rather it puts forth high-level design guidelines

and enables users to provide their own implementation. RESTful web services allow the

requesting systems to access and manipulate textual representations of web resources by

using a uniform and predefined set of stateless operations. By using a stateless protocol and

standard operations, RESTful systems aim for fast performance, reliability, and the ability

to grow, by re-using components that can be managed and updated without affecting the

system as a whole, even while it is running. Web service APIs that adhere to the REST

architectural constraints are called RESTful APIs.

Figure 2.6 shows that how CASTR handles a request using the RESTful API and sends

the response back. CASTR’s presentation layer makes a request to CASTR web services

whenever data processing is required. For downloading the dataset CASTR web service

makes a request to Bugzilla REST API.
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Related Work

As the manual assignment of bug reports to a developer is a monotonous job, many re-

searchers have proposed using assignment recommenders to reduce the amount of resources

to be invested towards bug triage [1, 2, 5, 17, 18, 30]. All previous work has sought to find

specific answers to creating an assignment recommenders however none of these works fo-

cus on assisting with the recommender creation process, except work done by Anvik et al.

[1].

3.1 Assisting With Bug Report Triage

Assisting with recommender creation is an emerging research area in software engi-

neering. There are similar tools to the CASTR, such as CASEA [1], Porchlight [8], and to

a lesser extent, Porchlight’s predecessor TeamBugs [9].

3.1.1 CASEA: Creation Assistant Supporting Triage Recommenders

Anvik et al. [1] implemented the software tool CASEA to assist a software project in

creating and maintaining bug assignment recommenders. CASEA is an implementation of

the approach proposed by Anvik and Murphy [2] that leverages a project members knowl-

edge to assist in creating and managing bug report assignment recommender configurations.

CASEA assists in the creation of project-specific heuristics and the selection of valid de-

veloper recommendations. A project-specific heuristic is a generalized rule used to label a

bug report with the name of the developer that resolved the problem. CASEA also assists a

user in labeling and filtering the bug reports used for creating a project-specific assignment
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recommender. CASEA guides a project member through the assignment recommender cre-

ation process in four steps: Data Collection, Data Processing, Recommender Training, and

Evaluation. CASEA provides three different ways to collect data:

• Connect to the project’s issue tracking system (ITS) through a web interface URL

(e.g. XML-RPC, REST).

• Connecting to the project’s database.

• Importing training and validation XML files containing bug reports.

Once the data is imported into CASEA, the system performs two types of filtering:

automatic and assisted. The automatic filtering performs three actions on the textual data

such as removing stop words, stemming and removal of punctuation and numeric values.

CASEA supports two types of assisted filtering: label filtering and instance filtering. A

label frequency graph is used for label filtering and project-specific heuristics are used

for instance filtering. Once the data processing is done, CASEA performs recommender

creation using two common machine learning algorithms: Support Vector Machines and

Naive Bayes. CASEA provides analysis data like the time taken to train the recommender,

and evaluation results in the form of precision and recall metrics [1].

CASEA was developed as a desktop application in 2013 on the Microsoft platform

using the C# programming language. CASEA had a number of limitations including: per-

formance issues, the audience was limited to Windows users, it does not address data im-

balances, and it does not distinguish between complex and simple source code changes.

Also, CASEA was never field tested.

CASTR is a refinement of CASEA [1]. This thesis presents a web-based tool which is

platform independent and addresses some of the limitations of CASEA.
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3.1.2 Porchlight / TeamBugs

The Porchlight tool uses tags, attached to individual bug reports by queries expressed

in a specialized bug query language, to organize bug reports into sets so developers can

explore, work with, and ultimately assign bugs effectively in meaningful groups [8]. This

tagging functionality is similar to the grouping of reports in CASTR, which also groups

bug reports into categories for specifying and applying labeling heuristics.

The TeamBugs tool was integrated with their project-specific bug tracker to populate

the list of bug reports which need to be triaged. The tool shows a list of all the developers

who are mapped to the project so that a project member can assign new bug reports to the

appropriate developer. The bug report is assigned to a developer by drag-and-droping the

bug report on a developer’s name, which labels the bug report. This labeling functionality

is similar to that of CASTR, which also labels the bug reports with a developers name based

on the resolution group.

3.2 Assisted Machine Learning Recommender Creation

There are commercial products that can be viewed as similar to the CASTR tool, such

as Skytree Infinity, BigML, Azure ML, Amazon ML and Google Cloud ML.

Skytree Infinity [31] (formally called Skytree Server) provides a platform to make pro-

foundly precise and versatile analytic solutions utilizing machine learning technologies. It

is designed to be an extremely scalable platform to enable data scientists and analysts to

focus more on building analytic solutions rather than implementing algorithms. It performs

tasks such as data prediction, exploration, and transformations. Like CASTR, Skytree In-

finity assists in preparing data for use with a machine learning algorithm, visualizing the

data and assisting in selecting the most appropriate parameter values when building a model

utilizing a machine learning algorithm.

BigML [6] is a simple, highly adaptable machine learning platform that provides cloud-

based service to automate prediction data. BigML accepts data in comma-separated values
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(CSV) format to prepare a data set for use by a machine learning algorithm. The user

can then generate a decision tree model from the data. If desired, a user can return to the

data set creation step and deselect different attributes to tune the model. Unlike CASTR,

BigML provides no support for data preparation such as stemming and stop word removal

- the user is expected to perform such tasks before use. Also, BigML does not provide any

visualization of the data beyond a tabular format. The utilization of BigML for making a

bug assignment recommender would require a lot of effort with respect to the users, whereas

CASTR tries to reduce required efforts.

Microsoft Azure ML [22], Amazon ML [21], and Google Cloud ML [23] are GUI-based

integrated development environments for constructing and executing a machine learning

workflow. To initialize a model in Azure ML, the system gives numerous alternatives to

choose the most appropriate algorithm to classify data. Azure ML additionally supports

R language modules and Python scripts. The data model is deployed as a fully managed

web service on the cloud that connects to any data anywhere. The user can save and edit the

solution anytime. Amazon ML provides visualization tools and wizards that create machine

learning models. The user does not need to learn complex algorithms. Amazon ML creates

data patterns from existing data and then it makes predictions. Google Cloud ML creates the

data model with the TensorFlow framework and performs large scale training on a managed

cluster. It also manages batch predictions and supports a huge number of users.

All the commercial machine learning products (Skytree, BigML, Azure, Amazon and

Google Cloud ) are mainly developed for business solutions rather than focusing on bug

report triage recommenders. The main objective of CASTR is to concentrate on bug triage

workflows and to integrate the tool with open source projects so that real-world software

projects can assess the system. CASTR provides visualizations such as frequency charts

and graphs to analyze bug reports.
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Chapter 4

An Approach to Assisting with Triage
Recommender Creation

This chapter presents an approach to assisting with bug report triage recommender creation

that guides the triager in creating a recommender for bug report assignment. We start with

an overview of the methodology. Next, we show how CASTR helps a user through the

bug report assignment creation process for those who use the Bugzilla2 issue tracking sys-

tem. To demonstrate how CASTR is used, we have chosen to use the Plasmashell product

from KDE3, the LibreOffice from the Document Foundation4 project, and Firefox from

the Mozilla5 project. We chose to use these three open source projects for demonstrating

CASTR as these projects have large development communities, many products6, and have

a large set of reports for training an assignment recommender.

4.1 An Overview of Bug Report Assignment Recommender Creation

A similar process to that given in the Figure 1.1 is used to create a recommender that

suggests which developer should be assigned the responsibility for resolving a particular

bug. However, applying our approch in practice is complex as many related decisions must

be made to create the recommender. Specifically, the following questions must be answered

2Bugzilla is a web-based general-purpose bugtracker and testing tool. A large number of companies,
organizations, and projects use Bugzilla.

3KDE is software community which developes an open source softwares. It provides tools and resources
that allow collaborative work and can be found at www.kde.org

4The Document Foundation promotes open-source document handling software and can be found at
www.documentfoundation.org

5Mozilla Firefox is a web browser and can be found at www.mozilla.org/en-US/firefox
6KDE-748 products, LibreOffice-7 products and Mozilla-167 products
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in order to create a bug report assignment recommender:

1. From which project should the bug reports be extracted?

2. How many bug reports should be used to create the recommender?

3. How should the bug reports be labeled?

4. How many and which project heuristics should be used?

5. Which machine learning algorithm should be used to create the recommender?

6. What is the minimum number of bug reports that a developer should have resolved to

be recommended?

7. What technique should be used to handle data imbalances?

The next section presents our answer to the list of questions, the first three questions

are part of the data collection and remaining questions arise at the time of recommender

creation.

4.2 CASTR

In this section, we present how CASTR works in practice. CASTR first asks a user to

login into the web application using a username and password. Each unique user will have

their own storage space on the server to save the data. Figure 4.1 shows the login interface

of CASTR.

Figure 4.1: CASTR login screen.
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Figure 4.2: CASTR dashboard screen.

Once the user is logged into CASTR, the dashboard screen will be displayed as given

in Figure 4.2. It provides information about previously downloaded datasets and the total

number of bug reports in the dataset. It also provides the access link to download a new

dataset (see Section 4.2.1) and to upload triage recommender configurations (see Section

4.2.2).

4.2.1 Downloading the Dataset

To answer the question “From which project should the bug reports be extracted”,

CASTR provides a web interface as given in the Figure 4.3 to download the bug reports

from a Bugzilla repository. The system can be extended in the future to support data collec-

tion from other issue tracking systems. The user can select a project repository URL from

the given list789 or can provide a Bugzilla repository URL to download the bug reports.

Once the user is connected to the repository’s REST end point, all of the products of the

project will be filled up in the selection list. In the Bugzilla repository, the “product” is also

known as the “project”. Also, the user can specify the initial bug report creation date from

which to start pulling reports, and the number of reports to gather. When the user clicks on

the “Create” button, the CASTR frontend forwards the request to the Bugzilla repository

via CASTR’s backend services.

Table 4.1 shows the parameters we used for collecting the three datasets from KDE,

Document Foundation, and Mozilla. As shown in Figure 4.3, CASTR enables the user to

7https://bugs.kde.org/jsonrpc.cgi
8https://bugs.documentfoundation.org/jsonrpc.cgi
9https://bugzilla.mozilla.org/jsonrpc.cgi
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Figure 4.3: CASTR downloading bug reports screen.

download the bug reports using two fields: earliest report date and maximum reports. The

earliest report date is a report creation date in the past and the maximum reports field is

set to the maximum number of reports to be downloaded. For example, we made a request

to download a maximum of 1500 reports which were reported on or after Jan 1, 2018

for the Plasmashell project. The size of the dataset for Plashmashell project was only 1112,

showing that some projects may not have a pre-chosen fixed quantity reports. Alternatively,

a large number of reports can be downloaded by setting the earliest report date to be 3

months earlier. We determined the quantity of the reports based on the selection of the time

period and providing a fixed quantity such as six months and 1000 to 5000 reports so that

we can train a recommender with a sufficient number of reports.

Table 4.1: Projects with different date range and number of reports used for tuning recom-
menders.

Projects Start Date End Date # of Bug Reports
Plasmashell Jan 1, 2018 Feb 23, 2019 1112
LibreOffice Jun 1, 2018 Feb 23, 2019 2500

Firefox Jun 1, 2018 Nov 13, 2018 1000
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Figure 4.4: CASTR configuration tab.

4.2.2 Triage Recommender Configuration

CASTR shows developer activity profiles, bug report distribution based on status, pre-

cision for the top one, three and five developer recommendations and a confusion matrix

for the created recommender. In the triage recommender configuration screen there are

three tabs: Configuration, Analysis, and Confusion Matrix. Each tab displays the relevant

information.

Configuration Tab

Information about the collected dataset will be displayed under the Configuration tab,

as shown in the Figure 4.4. Through configuration options, a user will be able to perform

data filtration by setting project-specific heuristics for labeling the reports, and a minimum

threshold value for which labels to recommend.

As shown in the Figure 4.4, CASTR provides four supervised machine learning algo-

rithms for creating a recommender: SVM, Naive Bayes, C4.5, and Rules. CASTR also

supports the handling of data imbalances with three different approaches: oversampling

using SMOTE, undersampling using clusters and manual oversampling.

To show which projects heuristics will be the most useful for labeling, CASTR shows
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resolution-wise the general distribution of the bug reports. Based on the dataset for each

project, the number of heuristics will be different as shown in Table 4.2. The number

of heuristics will be equal to the number of resolution groups. By changing the number

of heuristics, the display of the resolution distribution is updated. For example, if 3 is

selected as number of heuristic then only heuritics for the first 3 resolution groups are

labeled. All remaining bug reports will be consolidated into the “Other” resolution group

and the selected value will be used to label all of the remaining bug reports. For example,

if we change the number of heuristics to five for LibreOffice then bug reports for the the

last three resolution groups will be grouped into the “Other” resolution group and labeled

separately.

Labeling Instances

To train a bug report assignment recommender, we need to provide a set of reports that

are labeled with the name of the developer who was either assigned to the report or who

resolved it. Labeling is an important stage of data preprocessing in supervised learning. A

training algorithm must be shown which target label to recommend. Mapping of the target

attribute in a dataset is called labeling.

For an assignment recommender, this step appears to be simple as it seems obvious to

use the value of the assigned-to field in the report. However, the problem is not that simple

because projects tend to use the status and assigned-to fields of a report differently. For

Table 4.2: Example of dataset distribution based on resolution group.

Plasmashell LibreOffice Firefox
# of Heuristics: 9 # of Heuristics: 8 # of Heuristics: 7

Resolution Group Distribution (%) Resolution Group Distribution (%) Resolution Group Distribution (%)
Duplicate 52.2 Fixed 37.6 Fixed 43.3

Fixed 20.1 Duplicate 31.0 Duplicate 22.3
Worksforme 7.1 Worksforme 11.2 Incomplete 15.8

Invalid 6.6 Notabug 8.3 Invalid 7.8
Unknown 5.5 Invalid 4.5 Worksforme 5.7
Upstream 4.0 Wontfix 3.5 Wontfix 4.9
Wontfix 3.6 Unknown 3.1 Unknown 0.2

Later 0.7 Moved 0.7
Moved 0.3
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example, in all the projects from the three chosen repositories, the value of the assigned-to

field does not initially refer to a specific developer, but is first assigned to a default email

address before the first report is assigned to an actual developer. For reports with a different

resolutions, such as duplicate, or reports with a trivial fix, such as changing the access

modifier of a method, the assigned-to field is often not changed.

Instead of blindly using the assigned-to field, we use project-specific heuristics to la-

bel the reports. These heuristics can be derived either from direct knowledge of a project

member or by examining the logs of a random sample of reports for the project. However,

before we can label the bug report, we need to decide where to get the inforation from the

bug report to use as a label. The set of valid labels is determined from the bug report dataset.

Based on examining the bug report resolution and activity history for various projects, we

determined a set of valid data sources (see Table 4.3) from which to extract labels.

The user can label bug reports using resolution groups. For example, bug reports marked

as Fixed can be labeled as FixedBy so that at the time of classification it will classify the

bug report based on this label. To label other bug reports the user needs to select “Other

Heuristics” value. In Other Heuristics, the selected value will be labeled for all remaining

bug reports. It will impact when the user sets a smaller number of heuristic than the number

of resolutions. Based on the heuristic and label source, the developer profiles (developer

name and number of bug reports resolved) will be calculated and displayed.

Table 4.4 shows an example of project-specific heuristics. For example, if a report is

Table 4.3: Examples of valid data sources.

Valid Label Description
AssignedTo The value of the assigned-to field
FixedBy The last person to mark the bug report with resolution fixed
Resolver The person who marks the bug report as resolved
Reporter The person who reports the bug report
FirstResponder The person that first responds to the bug report in the comments
Attachment The last person to submit an attachment to the bug report
DoNotUse Ignores bug report for the classification
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Table 4.4: Examples of project heuristics used for labeling reports.

Resolution Group Label
Plasmashell LibreOffice Firefox

Fixed FixedBy FixedBy Attachment
Worksforme FirstResponder FirstResponder Resolver

Invalid Resolver Resolver Resolver
Unknown Resolver Resolver Resolver
Upstream Resolver - -
Wontfix FirstResponder Resolver FirstResponder

Later Resolver - -
Moved Resolver Resolver -

Duplicate DoNotUse DoNotUse DoNotUse
Notabug - Resolver -

Incomplete - - FirstResponder

resolved as Fixed, is labeled with whoever has fixed the report. If a report is resolved as

Worksforme, is labeled with whoever responded first to the report.

Selecting Valid Labels

The user can set a minimum threshold to eliminate developers that have fixed a small

number of bug reports. For example, developers who has resolved less then 10 bug reports

according to the project heuristics may not be considered for recommendation. As shown

in Figure 4.4, we took 20 as minimum threshold value to recommend the set of developers.

The line chart presents developer-wise bug reports and the red line indicates the minimum

threshold. CASTR removes from labeling bug reports for developers falling under the lower

threshold.

Selection of the Machine Learning Algorithm

There are several machine learning algorithms that can be used to create a triage recom-

mender (see Section 2.4). To determine an appropriate algorithm for recommender creation,

we evaluated four different algorithms for the three different projects of Plasmashell, Li-

breOffice and Firefox. We chose to investigate Naive Bayes [20], Support Vector Machines

29



www.manaraa.com

4.2. CASTR

[25], C4.5 [26] and Rules [26] as they cover the different categories of supervised machine

learning algorithms.

To fully evaluate the effectiveness of a recommender created using the four different

algorithms, we examined both precision (the fraction of relevant instances among the re-

trieved instances) and recall (the fraction of relevant instances that have been retrieved over

the total amount of relevant instances). Improving precision typically reduces recall and

vice versa. The precision and recall of the recommenders created using the four algorithms

is presented in Table 4.5. For the recommender creation we have used the project-specific

heuristics given in Table 4.4 to label the bug reports and we set minimum threshold number

as 20 to eliminate developer falling under the lower threshold. The minimum threshold can

vary from project to project and based on the size of the developer profiles.

Precision =
# o f correct recommendations
# o f recommendations made

(4.1)

Recall =
# o f correct recommendations

# o f possibly relevant recommendations
(4.2)

For recommender creation, we are interested in a recommender that has high precision

as we would prefer the recommender to produce a small list of developers with the right

expertise as opposed to a recommender that produces a list containing all developers with

only some having the right expertise. From the Table 4.5 we see that the SVM algorithm

Table 4.5: Precision and Recall of a recommenders when using different machine learning
algorithm.

Top
Predictions

SVM Naive Bayes C4.5 Rules
Plasmashell

(P/R)
LibreOffice

(P/R)
Firefox
(P/R)

Plasmashell
(P/R)

LibreOffice
(P/R)

Firefox
(P/R)

Plasmashell
(P/R)

LibreOffice
(P/R)

Firefox
(P/R)

Plasmashell
(P/R)

LibreOffice
(P/R)

Firefox
(P/R)

1 96 11 95 2 51 11 89 10 96 2 55 11 89 10 81 2 38 10 92 10 97 2 46 11
2 90 19 94 5 40 14 82 17 94 5 37 12 89 19 82 3 30 11 89 19 94 5 32 12
3 83 26 93 7 34 15 78 25 93 7 35 15 83 26 78 5 34 13 85 27 94 7 35 14
4 79 33 92 9 29 15 76 31 92 9 30 16 76 32 80 7 41 17 71 30 92 9 27 14
5 73 38 91 11 36 19 73 38 90 11 36 19 73 38 78 8 36 19 73 38 91 11 36 19
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Figure 4.5: CASTR analysis tab.

produced recommender that had the highest precision when making one recommendation

for Plasmashell. The Rules algorithm produced a recommender that had the highest pre-

cision when making one recommendation for LibreOffice and Firefox. However, when

making three or more recommendations, the SVM algorithm generally provides a higher

precision. We therefore chose SVM as the algorithm for creating a recommender.

Analysis Tab

Once the user starts the recommender creation process, the user is moved to an Analysis

tab that presents progress information, such as the time taken to train the recommender and

evaluation results. The user can then return to the Configuration tab, adjust the values for

label and instance filtering, and create a new recommender. This process continues until

the user is either satisfied with the created recommender, or the user has determined that

an assignment recommender cannot be created with a high enough accuracy to benefit the

project.

The Analysis tab displays the precision for the top 1, 3 and 5 recommendations for

a testing set. Figure 4.5 shows a chart of the precision of recommender using Plasmashell

project specific heuristics (see Table 4.4) and four different algorithms: SVM, Naive Bayes,
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Figure 4.6: CASTR confusion matrix tab.

C4.5 and Rules. The Analysis tab also displays an example of possible labels and predic-

tions for randomly selected bug reports from the testing set (see Figure 4.5 Sample Recom-

mendations). The detailed information on how the testing set is created is given in Section

4.3. By selecting an item from the history grid (see Figure 4.5 History), user is moved to

Configuration tab that displays configuration which were used in past. The logs section

displays the processing time taken by CASTR to create the assignment recommenders.

Confusion Matrix Tab

The confusion matrix tab displays the performance statistics as a classification confu-

sion matrix. For each class value, it shows the distribution of predicted class values. A

confusion matrix is used to describe the performance of a classifier using a testing dataset.

It will display the correct/incorrect classified instances from the testing dataset which is

used in the evaluation. For example, Figure 4.6 showing kde@davidmundson.co.uk was

predicted 28 times when the correct label was kde@private.broulik.de.
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4.3 CASTR: Web Service

All requests made by the interface will be processed by the application layer using

RESTful web services. In the application layer, we use the Java API of Weka [19], a mature

machine learning environment that is successfully used across several domains. When the

user clicks on the “Recommender” button given in the Configuration tab (see Figure 4.4),

first we perform data filteration in three stages as follows:

1. First we remove bug reports labeled as “Do Not Use” from the selected dataset. After

this step we split the original dataset into a training set and a testing set.

2. We set the first 90% of the bug reports chronologically from the dataset as the training

set and remaining 10% of the most recent bug reports as the testing set.

3. We eliminate bug reports from the training set resolved by developers that do not

meet the minimum threshold criteria.

4. We perform text filtering by selecting only nouns and removing of stop words from

the bug report summary and description field.

Once data filtration is done, we train the classifier using the Weka classifiers given in

Table 4.6 on the training dataset for the selected machine learning algorithm.

4.3.1 An approach to handle data imbalance

A dataset is imbalanced if the class distribution is not uniform among the classes. An

imbalanced dataset will bias the prediction model towards the more common class (see

Table 4.6: Weka classes to train the classifier.

Machine Learning
Algorithm

Weka Classifier Description

SVM SMO
Implements sequential minimal optimization algorithm for
training a support vector classifier.

Naive Bayes NaiveBayesMultinomial Class for building and using a multinomial Naive Bayes classifier.
C4.5 J48 Class for generating a pruned or unpruned C4.5 decision tree.

Rules ConjunctiveRule
This class implements a single conjunctive rule learner that can
predict for numeric and nominal class labels.
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Figure 4.6). Oversampling and undersampling are techniques used to adjust the class dis-

tribution of a data set. An example of imbalanced data is shown in Figure 4.7 in which

the first three developers for Plasmashell have at least twice as many resolved reports as

the other six developers. Figure 4.7 shows huge difference between the number of reports

resolved by first developer and remaining developers for LibreOffice and Firefox project.

One of the potential reasons behind data imbalance can be assigning the new incoming bug

reports to a default user of the open source project. Mostly all of the software project’s

issue tracking system are assigning the new incoming bug report to a default user and then

the bug triager will assign the incoming bug report to the correct developer. To handle im-

balanced data, CASTR provides three different approaches: oversampling using SMOTE,

manual oversampling and undersampling using clusters.

First we experimented with the most common method Synthetic Minority Over-sampling

Technique (SMOTE) introduced by Chawla et al. [13] to resample a dataset. SMOTE is

an over-sampling approach in which the minority class is over-sampled by creating “syn-

thetic” examples rather than by over-sampling with replacement. The minority class is

over-sampled by taking each minority class sample and introducing synthetic examples

along the line segments joining any/all of the k minority class’s nearest neighbors. Depend-

ing upon the amount of over-sampling required, neighbors from the k nearest neighbors

are randomly chosen. The main disadvantage with oversampling from our perspective, is

(a) Plasmashell (b) LibreOffice (c) Firefox

Figure 4.7: Example of imbalanced data.
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that by making exact copies of existing bug reports, overfitting is more likely. A second

disadvantage of oversampling is that it increases the number of bug reports in the training

set, thus increasing the training time.

Second, we implemented our own approach of sequential over-sampling by adding ex-

isting bug reports for each minority class uniformly unlike SMOTE which selects k nearest

neighbors randomly from the minority class. We considered all of the classes as a minority

class except the class name which has highest number of bug reports in the dataset. We

took the difference between the majority class’s number of bug reports and minority class’s

number of bug reports and then we increased the training dataset by adding the difference

number of bug reports to the minority class sequentially. Table 4.7 shows an example of

applying the sequential over-sampling technique. The algorithm for oversampling is:

1. Create a map devInstances to store the class (developer name) and list of bug reports

resolved by that developer.

2. Find the majority class topDev that has resolved the highest number of the bug reports

from devInstances.

3. Iterate through each class value except majority class.

4. Find the number of bug reports to be added by calculating the difference between

number of bug reports resolved by topDev and the current developer.

5. Iterate through the bug reports resolved by the current developer until the number of

bug reports to be added is reached.

6. Copy the bug reports and add it to the list of instances for the classification.

Using this approach, we get the class distribution uniform for our dataset. The major

disadvantage of this method is that it increases the number of bug reports in the training

set by roughly three times (see Table 4.8) which leads to decreases in the performance of

recommender creation process.
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Table 4.7: Example of instances created when sequential over-sampling is applied on the
dataset.

Class Attribute # of Bug Reports
Resolved

# of Bug Reports
Added in Sampling

# Bug Reports
for Classification

kde@davidedmundson.co 170 0 170
plasma-bugs@kde.org 136 34 170

hein@kde.org 101 69 170
kde@privat.broulik.de 49 121 170

After experimenting with the two over-sampling methods, we implemented a method

for under-sampling a dataset using the Expectation Maximization (EM) algorithm by re-

moving some of the bug reports in the majority class. EM assigns a probability distribution

to each instance which indicates the probability of it belonging to each of the clusters. In

this technique, first we split the training dataset into two groups: the top one majority class

with the highest number of bug reports and the remaining classes in the other group. Then

we take the difference between the majority class’s number of bug reports and the other

group’s majority class to create the number of clusters. We create clusters from the dataset

of top one majority class. From each cluster, we take only a specific number of bug reports

for classification. The algorithm for under-sampling is:

1. Split the training set into a topDev dataset and a otherDev dataset. Store all the

bug reports resolved by majority class into topDev dataset and remaining all the bug

reports to otherDev dataset.

2. Find the number of clusters by calculating the difference between bug reports re-

solved by topDev and the second top developer (majority class from otherDev dataset).

3. Creates the clusters from topDev dataset.

4. Find the number of instances to be fetched from each clusters using the number of

bug reports resolved by the second top developer secondDev/No. of Clusters.

5. Iterate through each clusters and add the required instances to otherDev dataset.
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6. Use otherDev as the dataset for training the recommender.

The main disadvantage with under-sampling is it may remove some of the majority class

instances which are more representative. In other words, it may leads to discarding useful

information.

Table 4.8 shows the number of instances used for training the recommender using each

technique after applying the filtering given in Section 4.3. The SMOTE and manual over-

sampling techniques increased the instances by three times and the clustering technique

reduced the number of instances.

4.4 Summary

This chapter presented an approach to assist the project members with the creation of

assignment recommenders.

First, we presented information to guide a project member through the user interface

towards the recommender creation questions, such as how to extract bug report reports,

how to label the bug reports, and what heuristics configurations they should use. CASTR

allows a user to download bug reports for any project from the Bugzilla issue tracking

system. We showed how CASTR assists a project member with project-specific heuristics

configurations for labeling the reports. We also presented precision and recall values of

the assignment recommenders created using all of the four types of algorithms and how to

utilize the information provided in the Analysis tab and the Confusion Matrix tab.

Second, we explained the role of the CASTR web service and an approach to handle

data imbalance with different techniques and their impact on the dataset.

Table 4.8: Example of instances used for training the recommender.

Projects SMOTE Manual Oversampling Clustering None
Plasmashell 829 833 274 354
LibreOffice 6235 6264 1220 1265

Firefox 1231 1248 449 472
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Evaluation

This chapter presents an analytical method for evaluation and a user study of the CASTR

tool. Our hypothesis is that the use of CASTR will help reduce the complexity and time

needed for creating a bug report assignment recommender. To investigate this hypothesis,

we formulate three research questions.

RQ1: Does CASTR create assignment recommenders that make accurate recommen-

dations? If CASTR creates assignment recommenders that make accurate recom-

mendations, then a triager need not to examine the report as deeply as they would

without the recommendations. Using such recommenders change the triager’s role

from making decisions relying on their own knowledge, experience, and intuition or

that which they can gain from existing tools, to confirming decisions made by the

recommender. This shift changes, and hopefully, reduces the cognitive load on the

triager.

RQ2: Do bug report assignment recommenders created by CASTR perform similar to

the recommenders tuned by hand? If CASTR creates assignment recommenders

that provide similar precision than the recommenders tuned by hand (manual process

to create assignment recommemders), then a project member can save the time in

terms of efforts made by human resources to tune the recommenders manually.

RQ3: Can human triagers make effective use of information recommended by CASTR?

If CASTR creates assignment recommenders that assist human triagers then human
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triager can save time while assigning bug reports to appropriate developer manually.

Some of the human resources consumed by the triage process can be then directed

elsewhere in the project.

To investigate RQ1 and RQ2, we conducted an analytical evaluation of an assignment

recommender using our approach for three open source projects (Section 4.2.1). We inves-

tigated RQ3 through a field study, in which ten users (human triagers, software developers,

software testers and project manager) used CASTR.

5.1 An Analytic Evaluation of the Recommenders

To validate our hypothesis that CASTR can produce accurate assignment recommenders,

we analytically evaluated CASTR through laboratory experiments using data from three

open source projects: Plasmashell, LibreOffice and Firefox. These projects were chosen

as they vary in code size, small to large numbers of contributors, and good bug submis-

sion frequencies. We evaluated assignment recommenders created by CASTR to determine

that assignment recommender can be created with a high enough accuracy to benefit the

project. This section begins with a description of our evaluation methodology. The remain-

der of this section presents the results of our analytic evaluation of the created assignment

recommenders.

5.1.1 Analytic Evaluation Procedure

First we evaluated an assignment recommender created by hand. We performed an

evaluation using the bug reports with the ids given in Table 5.1 from the Plasmashell project.

Initially, we followed the similar process given in Figure 2.2. After identifying the valid

bug reports we have to determine the potential developer who can fix the bug report. In

order to find the potential developer, first we performed data filtering by removing stop

words, before searching for similar bugs (if reported) using the bug report summary. For

each bug report we found more than 500 similar bug reports. It was impossible to find the
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Table 5.1: Bug reports used in evaluation of assignment recommender created by hand.

Bug Report Id Component Bug Report Summary

390038 Desktop Toolbox
Desktop toolbox should be in top-right corner to
keep it from intruding on folder view icons

390034 Task Manager
Switching applications via mouse may result in a drag
and drop of a desktop file into the switched application

389815 Device Notifier
Possibility of code execution when opening volume which
label contains “ or $() from notifications panel

developer who has resolved nearly similar bug reports from such an extremely large set of

bug reports. In the end, we obtained the list of developers who have resolved bug reports

within the same component as the list of potential developers that could fix the bug. Again,

we failed to identify the developer as there are many developers who contribute to the

Plasmashell project. The process of creating assignment recommender by hand, certainly

requires project knowledge to recommend the most appropriate developer who can fix the

bug report.

To evaluate assignment recommenders created by CASTR, we trained the recommender

using 90% of the bug reports from the dataset and remaining 10% of the bug reports we set

in the testing set. We use precision and recall to measure the performance of the assignment

recommenders created using CASTR. Precision measures how often the approach makes

a relevant recommendation for a report (Equation 4.1). Recall measures how many of the

recommendations that are relevant are actually recommended (Equation 4.2).

The key piece of information in computing both precision and recall is the set of ap-

propriate recommendations. Table 5.2 shows the number of bug reports used while evalu-

ating CASTR for three different projects. The column “After filtering dataset size” shows

the number of bug reports remaining in the dataset after removing bug reports labeled as

DoNotUse. If we apply other filters such as setting the minimum threshold value then those

bug reports will be eliminated from the training set.

As we determined the set of valid labels from the bug report dataset (see Table 4.3), we

added a Do Not Use label to not include a set of bug reports for the classication. Mainly
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Table 5.2: Training and testing set sizes for evaluating recommenders.

Projects Original
Dataset Size

After Filtering
Dataset Size

# of Bug Reports in
Training Set

# of Bug Reports in
Testing Set

Plasmashell 1112 532 479 53
LibreOffice 2500 1725 1553 172

Firefox 1000 777 699 78

we aimed to use Do Not Use label for the set of bug reports which are marked as Duplicate

because, we should have the developer’s name who has resolved the bug report which is

a duplicate of the bug reports and CASTR creates an assignment recommender on a pre-

downloaded dataset. CASTR does not access the bug reports at run time. Initially, we

considered downloading the duplicate of the bug reports at the time of downloading the

actual dataset but it increased the size of the dataset drastically. As given in Table 4.2,

the dataset of Plasmashell project contains 52% of bug reports with the resolution group

Duplicate, while LibreOffice and Firefox project contains 31% and 22% of this resolution

group respectively. We can also set the label Do Not Use for the set of bug reports which

are in resolution groups: Later, Moved and Unknown. It is very unlikely for CASTR to

recommend possible developer to fix the bug report from the resolution group which has

lower than 1% of the bug reports.

5.1.2 Assignment Recommender Evaluation

Once the recommender is created, we evaluate the performance of the recommender

using precision, recall and a confusion matrix. Before we evaluate the recommender, we

prepare the set of developers for each different component to find possibly relevant recom-

mendations. We need to know for each report in the test set which developers on the project

might be a possible recommendation to resolve the report. Table 5.3 shows an example of

sample recommendations created by CASTR using the SVM algorithm and project specific

heutistics given in Table 4.4.

Figure A.3 presents the recommender evaluation results for each type of algorithm using
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Table 5.3: Example of sample recommendations generated by CASTR.

Bug Report Id Component Expected Predicted

390038 Desktop Toolbox
kde@privat.broulik.de

nate@kde.org
kde@davidedmundson.co.uk

kde@davidedmundson.co.uk
kde@privat.broulik.de

hein@kde.org
nate@kde.org
cfeck@kde.org

390034 Task Manager

mvourlakos@gmail.com
kde@privat.broulik.de

nate@kde.org
kde@carewolf.com

zakhar.nasimov@gmail.com
kde@davidedmundson.co.uk

bugseforuns@gmx.com
chadjoan@gmail.com

cfeck@kde.org
omarplummer@imergetechnologies.com

kde@davidedmundson.co.uk
kde@privat.broulik.de

hein@kde.org
nate@kde.org
cfeck@kde.org

389815 Device Notifier

kde@davidedmundson.co.uk
kde@privat.broulik.de

hein@kde.org
nate@kde.org
cfeck@kde.org

kde@privat.broulik.de
nate@kde.org

kde@davidedmundson.co.uk
hein@kde.org
cfeck@kde.org

the Plasmashell project dataset. To create the assignment recommender we used project-

specific heuristics given in Table 4.4 with a minimum threshold as 20 and four different type

of sampling techniques, one at a time. Each chart shows 4 data points which represents the

precision values of the recommender created using three different sampling techniques :

SMOTE, Manual Oversampling, Clustering and the last point presents the precision value

of recommender created without applying any sampling techniques (See Figure 4.4 option

None).

Figure A.3 shows the assignment recommenders created using the algorithm SVM,

Naive Bayes, C4.5 and Rules with data imbalance technique (SMOTE, Manual Over-

sampling, Clustering and None). Note that option None provides a higher precision than

SMOTE and the clustering technique. For the assignment recommenders created using

the Rules algorithm, they perform better with an option None than clustering and manual

oversampling and SMOTE performs almost similar.

Furthermore, we also evaluated the assignment recommenders using a confusion matrix
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(a) SVM

(b) Naive Bayes

(c) C4.5

(d) Rules

Figure 5.1: Top 1, 3 and 5 precision for the recommendations created using 4 different
types of sampling techniques on Plasmashell dataset.
Data points: 1. SMOTE 2. Manual Oversampling 3. Clusters 4. None
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Table 5.4: Recommenders evaluation result from Confusion Matrix.

Technique SVM Naive Bayes C4.5 Rules
Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

SMOTE 14 39 9 44 0 53 0 53
Manual

Oversampling
13 40 9 44 10 43 0 53

Clustering 28 25 22 31 22 31 47 6
None 11 42 9 44 7 46 0 53

method. Table 5.4 presents the evauation results using confusion matrix on the Plasmashell

testing dataset. The Correct and Incorrect columns show the number of testing bug reports

predicted correctly and incorrectly.

Table 5.4 presents the opposite results of precision and recall. One of the possible reason

behind the variation in results may be because we prepared the set of developers for each

different component to find possibly relevant recommendations. We consider component-

wise the developer list in the precision and recall calculation which results in getting higher

precision for the assignment recommender. Appendix A shows detailed results from rec-

ommender evaluation for all three projects.

5.2 A Field Study of CASTR

Given the analytical evaluation results we decided to conduct the field study with the

data sampling fixed at None as the other three approaches (SMOTE, Manual Oversampling

and Clustering) were not making a progressive impact on the results. Most often the results

were similar or with lower precision. Inaddition, all three approaches were resizing the

dataset so we chose not to use any sampling techniques.

To gain insight into whether a human can make effective use of the information pre-

sented by CASTR, we conducted a field study with experienced software developers, project

managers, bug triagers and graduate students. The study contained ten (10) participants: 3

project managers, 5 application developers and 2 computer science graduate students. The

following sections presents the field study setup, prior knowledge and experience of partic-
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Table 5.5: Questionnaire used to get background information of participants.

Demographic Questions

1.
In which of the following age ranges do you fall?
[18-25, 26-39, 40-59, 60 or older, Prefer Not to Answer]

2.
To which gender identity do you most identify?
[Female, Male, Transgender Female, Transgender Male,
Gender Variant/Non-Conforming, Not Listed, Prefer Not to Answer]

3. What is your nationality?

4.
What is the highest degree or level of school you have completed?
[Elementary school, High School, Trade/technical/vocational training,
Associate degree (2-year), Bachelors degree (4-year), Graduate (Masters or Doctorate), Not Listed]

5.
What is your job function?
[Application Developer, QA/Testing, Program Director, System Integrator, Application Architect,
Project Manager, Business Analyst, Database Administrator, Student, Other]

Technical Background

6.
How many years of experience do you have with programming?
[0-3, 4-6, 7-10, 11-15, >15]

7.
What level of experience do you have with triaging bug reports?
[Beginner, Developing, Competent, Advanced, Expert]

8.
How frequently do you log a bug in the Issue tracking system?
[Never, Rarely, Occasionally, Often, Always]

9.
What level of experience do you have with using machine learning algorithms?
[Beginner, Developing, Competent, Advanced, Expert]

ipants and results of the participants using CASTR to create assignment recommenders for

a large open source project.

5.2.1 Field Study Procedures

The field study was conducted in the following manner. First we asked participants

to complete an initial survey that collected demographic information and technical back-

ground details. Table 5.5 shows the list of questions asked in the initial survey. The ques-

tions for demographic information are only for general analysis to breakdown the overall

survey response data into meaningful groups of respondents. For example, we found that

Indian participants took the survey more than the participants with other nationalities. Par-

ticipants with age between 26 to 39 were more interested in the field study. Most of the

participants has completed minimum Graduate level schooling, and most of them belong to

job function Application Developer.
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Table 5.6: Questionnaire used for the post usage interview.

1.
Did you find CASTR easy to use?
[Extremely, Very, Moderately, Slightly, Not at all]

2.
How likely are you to recommend CASTR for creating a recommender
for bug report assignment?
[Extremely, Very, Moderately, Slightly, Not at all]

3.
How likely do you think assignment recommenders created using CASTR
will reduce the time it takes to triage bug reports?
[Extremely, Very, Moderately, Slightly, Not at all]

4. Do you have any suggestions for improvements to the CASTR user interface?

5.
Do you have any suggestions for improvements in the workflow of
recommender creation?

6. Do you want to receive a notification of the study result?
7. Do you want to be contacted by the researcher(s) for follow-up questions?
8. Do you want to try your own dataset for triaging?

For technical background, participants were asked about their level of experience with

triaging bug reports, how frequently they use an issue tracking systems, familiarity with

machine learning algorithms and years of experience with programming. After completing

the initial survey, we asked participants to create an assignment recommender using the

different settings provided by CASTR. We provided each participant a unique study id to

access CASTR, a dataset of the Plasmashell project (see Table 4.1) and an user manual of

CASTR.

We asked participants to submit tool usage feedback after they completed the creation

of an assignment recommender. The participants were asked to provide suggestions for any

improvements to the CASTR user interface or workflow of recommender creation or any

other comments about their experience with CASTR. Table 5.6 shows the list of questions

asked about the performance of CASTR. Appendix B shows the answers of questions asked

in the initial survey and post tool usage interview.
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Table 5.7: Developer wise bug report assignment from Plasmashell project.

# of Bug Reports
Assigned

After Removing Duplicate
Bug Reports

Developer Id

496 170 kde@davidedmundson.co.uk
263 136 plasma-bugs@kde.org
178 101 hein@kde.org
72 49 kde@privat.broulik.de
33 21 sebas@kde.org
28 21 notmart@gmail.com
12 8 aleixpol@kde.org
9 8 visual-design@kde.org
5 4 ivan.cukic@kde.org
5 4 kossebau@kde.org
2 1 kwin-bugs-null@kde.org
2 2 vladzzag@gmail.com
1 1 alex19930329@gmail.com
1 1 amantia@kde.org
1 1 arsenarsentmc@outlook.com
1 1 bhush94@gmail.com
1 1 faure@kde.org
1 1 mvourlakos@gmail.com
1 1 scott@spharvey.me

5.2.2 Dataset Information

The field study was conducted using the Plasmashell dataset similar to which we used

for our analytical experiment. The Plasmashell dataset contained 1112 bug reports (see Ta-

ble 4.1). The resolution-wise dataset distribution is given in Table 4.2. Table 5.7 presents

developer-wise the number of bug report assignments. The first column shows the number

of bug reports assigned to a particular developer initially. The second column shows the

number of bug reports assigned to a developer after removing bug reports marked as Dupli-

cate resolution. The last column identifies unique developers who are assigned to the bug

report.
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5.2.3 Prior Knowledge and Experience

Most of the participants had completed a minimum Bachelor-level degree with five par-

ticipants having completed a Masters degree. From all the 10 participants, 60% had prior

experience with issue tracking systems whereas 40% of the participants used issue track-

ing system occasionally or rarely. Overall bug triaging experience was a lower, with four

participants reported as beginner, three reported as developing, two reported as competent

and one reported advanced. Possible reason for the less advanced level or expert level

involvement in bug triaging is that most of the participants were part of a large software

development project team where responsibilities are limited within the modules or feature

development. Participants that reported the least familiarity with the machine learning al-

gorithms included five which were beginner, four which were developing interest and one

which was advanced level. Three participants had a good amount of experience with con-

tributing to open source projects such as Mozilla and KDE. We measured “good amount of

experience” based on years of the contribution to an open source project and having commit

access on the source code repository.

5.2.4 Quantitative Results

In the field study, a total of 71 recommenders were created by the participants using

different heuristic configurations provided by CASTR. Figure 5.2 shows the average pre-

cision and recall for the top 10 recommendations created using the four different type of

machine learning algorithms. Figure 5.2 also shows improving precision typically reduces

recall. While precision refers to the percentage of recommendations which are correct, re-

call refers to the percentage of total relevant recommendations classified correctly by an

algorithm.

Figure 5.2(a) shows that assignment recommenders created using the SVM algorithm

produced a higher precision with 86%, Naive Bayes with 80%, Rules with 78% and C4.5

with 70%. Figure 5.2(b) shows that assignment recommenders created using Naive Bayes
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(a) Precision (b) Recall

Figure 5.2: Average precision and recall for top 10 recommendations.

and SVM machine learning algorithm increased recall gradually with an increasing number

of top recommendations whereas assignment recommenders created using C4.5 and Rules

algorithm decreased in recall for the last 3 recommendations (Top-8, Top-9 and Top-10)

recommendations respectively.

Figure 5.3 shows the precision and recall with trend lines for top 1, 3 and 5 recommen-

dations for each assignment recommender created by all ten participants. The chart shows

that participants were able to get acceptable precision between 50% to 95% throughout for

Top-1 recommendation. Precision for Top-2 recommendations was between 20% to 80%

and precision for Top-5 recommendations was a maximum of 70% and a minimum of 10%.

The chart shows 0% precision when there was no recommendations for Top-5 due to the

selection of developer’s profile such as less than 5 developers left to consider for the rec-

ommendation. The charts for the top 1, 3 and 5 recommendations with precision and recall

for all the assignment recommender created by each participants is given in Appendix C.2

Table 5.8 shows the quantitative results from the ten participants. The first column iden-

tifies the unique participant. The second column presents the machine learning alogrithm

selected by the participants for creating their best assignment recommender. The next two

columns present the minimum and maximum threshold that the participants selected be-

fore creating their most accurate assignment recommender using CASTR. The minimum

threshold value is set to remove bug reports from labeling for developers that fall under the

49



www.manaraa.com

5.2. A FIELD STUDY OF CASTR

(a) Precision (b) Recall

Figure 5.3: Top 1, 3 and 5 precision and recall from all the recommendations created.

lower threshold. Half of the participants chose values greater than or equal to 10 for the

minimum threshold and the remaining participants used values less than 10. CASTR will

consider the maximum threshold as the maximum number of bug reports labeled with an

individual developer. The value of the maximum threshold will be calculated based on the

selected heuristics. The next three columns show the Top-1, Top-3 and Top-5 recommenda-

tions with precision and recall values for the best assignment recommender created by the

participants. Most of the assignment recommenders were created using the SVM machine

learning algorithm to get a higher precision.

Table 5.9 shows the heuristic configurations used for the creation of the best assignment

recommender (see Table 5.8). The first column identifies the unique participant. Next

column presents the number of heuristics to create assignment recommender. Based on

Table 5.8: Best assignment recommenders created by participants.

Identifier Algorithm Trials to
Best

Threshold Top 1 (%) Top 3 (%) Top 5 (%)
Min Max Precision Recall Precision Recall Precision Recall

User1 SVM 2 5 108 92 9 83 25 72 34
User2 SVM 1 10 130 96 11 83 25 77 38
User3 SVM 1 26 112 94 11 85 30 - -
User4 Naive Bayes 5 49 73 87 9 78 21 - -
User5 SVM 1 10 130 96 11 83 25 77 38
User6 SVM 2 1 141 74 17 58 33 56 49
User7 SVM 4 1 61 91 7 85 21 74 29
User8 Naive Bayes 1 1 117 50 5 37 10 33 14
User9 SVM 1 10 115 94 10 82 24 76 38
User10 SVM 7 1 102 87 14 65 27 60 42
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the number of heuristics, CASTR decides that how many heuristics need to be used while

creating the recommender. If a participant select a smaller number than the maximum

available resolution groups then CASTR uses the value of “Other heuristics” set in column

three for labeling all the remaining bug reports (see Section 4.2.2). The remaining nine

columns present the heuristic selected by participants for each resolution group to label

the bug reports. Table 5.9 shows that participants did not consider “Other Heuristics” for

labeling the bug reports.
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Table 5.9: Project heuristics used for creation of best assignment recommenders.

Identifier # of Heuristics Other Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved
User1 9 AssignedTo Do Not Use FirstResponder Resolver FirstResponder Reporter Resolver FixedBy FixedBy AssignedTo
User2 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
User3 9 AssignedTo Do Not Use FixedBy Resolver FirstResponder FirstResponder FixedBy Resolver FirstResponder FirstResponder
User4 9 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Resolver Attachment FirstResponder Resolver
User5 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
User6 3 AssignedTo Do Not Use Resolver AssignedTo Do Not Use
User7 9 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use Attachment FirstResponder AssignedTo Reporter
User8 4 AssignedTo Do Not Use Reporter AssignedTo AssignedTo Resolver
User9 9 AssignedTo Do Not Use FixedBy Resolver Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use

User10 6 Attachment Do Not Use Resolver Resolver AssignedTo AssignedTo FirstResponder
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Table 5.10: Heuristics used for labeling bug reports by most of the participant.

Resolution Group Label
Duplicate DoNotUse

Fixed FixedBy
Worksforme Resolver

Invalid Resolver
Unknown Resolver
Upstream Resolver
Wontfix FirstResponder

Later DoNotUse
Moved DoNotUse

Table 5.10 shows the label selected for each resolution group by most of the participants.

The heuristic configurations used for all the created recommenders is given in the Appendix

C.1. As shown in Table 5.9, most participants chose to use all of the heuristics. In this

scenario other heuristic label will be considered importent in the recommender creation

process.

As a part of the recommender evaluation, CASTR provides information about how long

the tool takes to create a recommender. Figure 5.4 presents the average time (in seconds)

for recommender creation using different types of machine learning algorithms. Figure 5.4

shows that assignment recommenders created using the C4.5 and SVM algorithms took

more processing time than the assignment recommender created using the Naive Bayes

and Rules algorithms. One possible reason for the increased processing time is both the

participant User1 and User7 have set the minimum threshold value as 1 which leads to

an increase the processing time as CASTR will consider all the possible developers for

classification.

5.2.5 Discussion of Quantitative Results and Observations

Based on observations while analyzing the field study result, participants were found to

employ two strategies for assignment recommender creation using CASTR. Some partici-

pants were found to be very experimental in their approach, making many changes before
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Figure 5.4: Average recommender creation time in seconds.

creating a new recommender. Other users were more methodical, making small changes

and testing the results. Most of the time participants changed the heuristic configurations

not the minimum threshold. Out of 71 recommenders, 42 were created with the minimum

threshold value as 1, 27 recommenders were created with threshold more than or equal to

10 and the remaining 2 recommenders were created with thresholds of 3 and 5. The max-

imum number of recommenders were created using the SVM machine learning algorithm

recorded as 32, using Naive Bayes recorded 19 times and 10 recommenders were created

using each of C4.5 and Rules algorithm.

5.3 Qualitative Results

Although participants were provided with a video presentation of CASTR and a brief

tutorial of the recommender creation process at the beginning of the field study, participants

encountered a number of problems related to understanding concepts and specifically with

labeling bug reports and setting minimum threshold value. Most of the participants were

not clear on how to select the appropriate label for bug report resolution and which machine

learning algorithm to use. Also, the meaning of the precision and recall metrics was not

initially well understood by participants. However, once their meaning was understood,

participants felt that they made more intelligent choices about the configuration.

As mentioned in Section 5.2.3, most of the participants did not have specific knowledge

about the project, such as who formed the core group of developers. This led to some
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participants choosing a low activity cutoff so as to not exclude developers, and resulted in

recommenders that were not accurate and took longer to create. This behavior would not

be expected from an actual project member using CASTR, as they would have knowledge

about the core development team. For example, User3 has bug triaging experience with

Mozilla project and therefore created assignment recommenders with a higher precision

(See Appendix C.2).

The field study results shows that 60% of the participants found CASTR easy to use

whereas the remaining participants found CASTR moderately and slightly easy to use. We

received positive response about recommending CASTR for creating a recommender for

bug report assignment with 50% of the participants responded as very and extremely and

the remaining participants responded moderately. The important question we asked to the

participants was whether they believed that the assignment recommenders created using

CASTR would reduce the time to triage bug reports and the response we received is 2

participants found it extremely likely, 5 participants found it very likely, and 3 participants

found it moderately likely.

5.4 Threats to Validity

We designed our experiment to minimize the threats to validity, but still a number of

decisions that might influence our results had to be made. We discuss the main validity

threats to our study with respect to internal validity, external validity, and construct validity

of this work.

5.4.1 Internal Validity

There is a possibility of error in the creation of the data set used for the evaluation.

Although, we examined a random number of bug reports to verify the data collection pro-

cedure was correct, there may have been some bug reports that contained incorrect data.

Currently in our approach, we use the bug report summary and description for the clas-
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sification. While the experimental results show that these two unstructured text data are

necessary, there could be other added information required to create a more accurate as-

signment recommender.

We use the default configurations provided by WEKA for all of the individual classifiers

studied. While most classifiers are highly configurable, we did not set any external param-

eters. The default configurations for some classifiers might be favorable for bug report

assignment and others might underperform.

During the training and testing of a classifier, we assumed only one developer as the

rightful owner of a bug report. However, based on patterns and history of bug reports

that are solved, there could be more than one active developer in the project who could

potentially address the bug.

To address the data imbalance issue, CASTR enables three implementation technique

and none of them worked well. It may be possible that other technique of oversampling or

undersampling work better with recommender creation.

5.4.2 External Validity

External validity reflect the generalizability of our results. In this work, participants

with no to little project-specific knowledge were used to evaluate the usability of CASTR.

Therefore, these results would not generalize to those with project-specific knowledge, but

could be considered as a lower-bound for such a group.

Another possible threat to the external validity of the result is that the participants au-

tomatically accepted the top recommendation without considering if the recommendation

was appropriate. This blind acceptance of recommendations could have led to the high

accuracy results.

The main threat to the external validity of the result is that field study was conducted

using a dataset of bug report from single project. The results may not extend to other

projects.
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5.4.3 Construct Validity

Threats to construct validity refers to the suitability of the evaluation measures. We

used a method to determine the set of developers that could have fixed a bug report and to

calculate precision and recall that is known to overestimate the group [4]. This results in

precision values that are overvalued, and recall values that are undervalued. However, the

evaluation results in CASTR show the relative differences between different configurations,

so even if the precision and recall values are over or under their true value, CASTR still

provides meaningful information to the user.

5.5 Summary

We evaluated CASTR to answer three research questions.

RQ1: Does CASTR create assignment recommenders that make accurate recommen-

dations? The results of the field study provides evidence that the accuracy of the

assignment recommenders is sufficiently high to be considered for assisting project

members to create assignment recommender using CASTR. The ten participants con-

tributed in the field study were positive about the value of the recommendations. Un-

fortunately, the small set of participants and the relatively small number of assign-

ments recommender created by some of participants made it difficult to determine if

CASTR creates assignment recommenders that make accurate recommendations.

RQ2: Do bug report assignment recommenders created by CASTR perform similar

to the recommenders tuned by hand? The process of assignment recommender

creation by hand is extremely time consuming. The person who is creating recom-

mender must have project specific knowledge in order to identify the correct devel-

oper who can fix the bug report. The recommender created by CASTR works much

better in terms of saving the time, predicted accurate developer and project knowl-

edge is not necessary to create assignment recommender.
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RQ3: Can human triagers make effective use of information recommended by CASTR?

The results given in Table 5.8 shows that most of the participants were able to create

the assignment recommender with the best accuracy within 5 trials. Most participants

did not have project knowledge. The field study result shows that human triagers can

make effective use of the information recommended by CASTR.

Regarding improvements to the CASTR user interface, most of the participants sug-

gested to improve user interface with graphs providing more details. A few participants

found the CASTR interface difficult to understand and one participant suggested to make

the CASTR interface more fancy with no scrollbars and more user friendly.

We also asked participants about any improvements in the workflow of recommender

creation and response was neutral. One participant found that CASTR would be more

useful if there was a wizard for creating a recommender and guidance on what machine

learning approach to use. Other participants found that configuration page can be more

descriptive and a wizard-based flow could have worked better than what CASTR offers.

One participant also suggested improvements in the sample recommendations section with

providing more detail and make each recommendation entry separated by lines or some

space so that it will be easy to read and understand.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The main goal of bug triage is to evaluate, prioritize and assign the resolution of bug

reports. A project member validates the bug reports according to the severities of defects.

If any changes are required then a decision needs to be made about to whom the work

will be assigned. For a given bug report, identifying an appropriate developer who could

potentially fix the bug is the primary task of a bug triaging process. This process become

overwhelming when the project receives a large number of bug reports everyday.

[2, 5, 17, 18, 30] proposed bug report assignment recommenders as a method for reduc-

ing the workload of a project member. Furthermore, the process of bug report assignment

recommender is a complex process as project members have to perform many steps such

as data filtration, labeling, selection of machine learning algorithm and create the recom-

mender. After creation of bug report assignment recommender, a project member needs to

determine if the recommender works well.

This dissertation presents an approach to assist a project member with the creation of

assignment recommenders to streamline the development process. The work described in

this dissertation makes following contributions to the field of software engineering.

First, we implemented a web based tool CASTR that allows a project member to analyze

the dataset with graphical representation. Additionally, CASTR assists project members in

configuring project-specific parameters when creating a recommender using four different

types of machine learning algorithm. In addition, CASTR allows project members to com-
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pare the last five recommenders created using different configurations.

Second, we show, through analytical evaluations, that recommenders can be created

with good accuracy using CASTR as compare to recommenders tuned by hand. The an-

alytical evaluation was conducted using the bug reports dataset from three different open

source projects and showed that recommenders with good accuracy could be created using

four different type of machine learning approach.

Lastly, we conducted the empirical evaluation using a field study with ten participants

from the different technical background and showed that the recommenders worked well

in practice. The field study results reveal that human triagers can make effective use of

information presented by CASTR.

6.2 Future Work

Although the results we obtained have shown that a CASTR assists the project members

with the creation of assignment recommenders based on feedback and the results of the user

study, a number of future improvements were identified for CASTR:

• Extending CASTR to collaborate with the other issue tracking systems (JIRA, Red-

mine etc.,) in addition to the Bugzilla repository.

• Additional work is also needed to create assignment recommenders using bug reports

marked Duplicate resolution. In this thesis work, we do not include bug reports

marked as Duplicate while creating recommendations.

• The CASTR user interface needs enhancement in the charts with more explanation,

better visualization, more descriptive configuration, analysis and confusion matrix

page.

• CASTR stores the created assignment recommenders on the server. However, the UI

only shows the five most recently created recommenders.
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• CASTR does not distinguish between complex and simple source code changes.

• Extending CASTR to support other types of triage recommenders.
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Appendix A

Assignment Recommender Evaluation
Results

This appendix presents the assignment recommender evaluation results for the three differ-
ent projects from Section 5.1.2.

A.1 LibreOffice

Table A.1: Evaluation results of assignment recommender created using LibreOffice
dataset.

Algorithm Sampling
Technique

Precision Recall Confusion
Matrix

Top 1 Top 3 Top 5 Top 1 Top 3 Top 5 Correct
Instance

Incorrect
Instance

SVM

SMOTE 88 87 86 2 6 10 36 136
MANUAL 94 93 91 2 7 11 93 79

CLUSTERING 94 93 90 2 7 11 86 86
NONE 95 93 91 2 7 11 97 75

Naive Bayes

SMOTE 97 95 91 2 7 11 103 69
MANUAL 95 92 90 2 7 11 70 102

CLUSTERING 97 93 90 2 7 11 68 104
NONE 96 93 90 2 7 11 82 90

C45

SMOTE 83 78 76 2 5 8 0 172
MANUAL 85 78 73 2 5 7 23 149

CLUSTERING 82 76 76 2 4 8 22 150
NONE 81 78 78 2 5 8 55 117

Rules

SMOTE 74 58 63 1 3 6 0 172
MANUAL 31 36 51 1 2 5 0 172

CLUSTERING 97 93 90 2 7 11 154 18
NONE 97 94 91 2 7 11 161 11
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(a) SVM

(b) Naive Bayes

(c) C4.5

(d) Rules

Figure A.1: Top 1, 3 and 5 precision for the recommendations created using different types
of sampling techniques on LibreOffice dataset.
Data points: 1. SMOTE 2. Manual Oversampling 3. Clusters 4. None
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A.2 Firefox

Table A.2: Evaluation results of assignment recommender created using Firefox dataset.

Algorithm Sampling
Technique

Precision Recall Confusion
Matrix

Top 1 Top 3 Top 5 Top 1 Top 3 Top 5 Correct
Instance

Incorrect
Instance

SVM

SMOTE 43 31 36 10 15 19 15 63
MANUAL 46 33 36 10 15 19 1 77

CLUSTERING 47 35 36 11 15 19 3 75
NONE 51 34 36 11 15 19 2 76

Naive Bayes

SMOTE 51 39 36 11 16 19 5 73
MANUAL 50 38 36 11 16 19 6 72

CLUSTERING 55 36 36 11 15 19 6 72
NONE 55 35 36 11 15 19 5 73

C45

SMOTE 38 25 36 10 14 19 0 78
MANUAL 38 34 36 9 14 19 6 72

CLUSTERING 38 33 36 10 13 19 7 71
NONE 38 34 36 10 13 19 5 73

Rules

SMOTE 34 28 36 9 12 19 78 0
MANUAL 36 37 36 9 15 19 0 78

CLUSTERING 46 35 36 11 14 19 0 78
NONE 46 35 36 11 14 19 0 78
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(a) SVM

(b) Naive Bayes

(c) C4.5

(d) Rules

Figure A.2: Top 1, 3 and 5 precision for the recommendations created using 4 different
types of sampling techniques on Firefox dataset.
Data points: 1. SMOTE 2. Manual Oversampling 3. Clusters 4. None

68



www.manaraa.com

A.3. PLASMASHELL

A.3 Plasmashell

Table A.3: Evaluation results of assignment recommender created using Plasmashell
dataset.

Algorithm Sampling
Technique

Precision Recall Confusion
Matrix

Top 1 Top 3 Top 5 Top 1 Top 3 Top 5 Correct
Instance

Incorrect
Instance

SVM

SMOTE 85 80 73 8 25 38 14 39
MANUAL 96 82 73 11 25 38 13 40

CLUSTERING 91 78 73 10 23 38 28 25
NONE 96 83 73 11 26 38 11 42

Naive Bayes

SMOTE 91 83 73 10 26 38 9 44
MANUAL 91 80 73 10 26 38 9 44

CLUSTERING 83 77 73 9 25 38 22 31
NONE 89 78 73 10 25 38 9 44

C45

SMOTE 87 79 73 10 25 38 0 53
MANUAL 83 83 73 8 26 38 10 43

CLUSTERING 85 81 73 9 26 38 22 31
NONE 89 83 73 10 26 38 7 46

Rules

SMOTE 77 64 73 8 20 38 0 53
MANUAL 77 69 73 8 21 38 0 53

CLUSTERING 87 68 73 9 21 38 47 6
NONE 92 85 73 10 27 38 0 53
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A.3. PLASMASHELL

(a) SVM

(b) Naive Bayes

(c) C4.5

(d) Rules

Figure A.3: Top 1, 3 and 5 precision for the recommendations created using 4 different
types of sampling techniques on Plasmashell dataset.
Data points: 1. SMOTE 2. Manual Oversampling 3. Clusters 4. None
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Appendix B

Field Study Outcome

This appendix presents the results of questions that were asked to participants while filling
initial survey and post tool usage survey after they completed the creation of an assignment
recommender from Section 5.2.1.

B.1 Initial Survey Results
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Table B.1: Participants demographic information and technical background details.

Age Ranges Gender Nationality Highest Degree Job Function Years of
Experience

Level of Experience
With Triaging
Bug Reports

Frequency of
Logging a Bug in

Issue Tracking System

Level of Experience
With Using Machine
Learning Algorithms

26 - 39 Male Indian
Graduate

(Masters or Doctorate)
Application
Developer 7-10 Beginner Often Beginner

26 - 39 Male Indian
Graduate

(Masters or Doctorate) Project Manager 4-6 Developing Always Developing

18 - 25 Male Indian
Bachelors degree

(4-year)
Application
Developer 0-3 Developing Often Developing

26 - 39 Male Canadian
Bachelors degree

(4-year)
Application
Developer 4-6 Advanced Always Advanced

26 - 39 Male Indian
Graduate

(Masters or Doctorate) Project Manager 7-10 Beginner Always Beginner

18 - 25 Female India
Bachelors degree

(4-year) Student 0-3 Beginner Occasionally Beginner

26 - 39 Male Indian
Bachelors degree

(4-year)
Application
Developer 7-10 Competent Occasionally Beginner

26 - 39 Male Sri Lankan
Graduate

(Masters or Doctorate) Student 4-6 Beginner Rarely Developing

40 - 59
Prefer Not
to Answer USA

Graduate
(Masters or Doctorate)

Project
Manager >15 Advanced Always Developing

18 - 25 Male Indian High School Student 4-6 Developing Occasionally Beginner
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B.2. CASTR USAGE FEEDBACK

B.2 CASTR Usage Feedback

Table B.2: Participant’s feedback on CASTR tool.

CASTR
Easy to Use?

Recommend
CASTR?

Reduce the
Time?

Improvements to the CASTR
User Interface?

Improvements in the Workflow
of Recommender Creation?

Very Moderately Moderately

Very Extremely Extremely

The working of CASTR is really good.
Still we can improve the Line Graph
by adding little more detail to it so

that it will be easily understandable.
Other than that I tried it with all

different Algorithms and worked perfectly
for me as I expected the output to be.

Everything in Recommender looked perfect
but we can still improve it by making some

changes to Sample Recommendations. I think
it should me more detailed and each entry
should be separated by lines or some space

so that it will be easy to read and understand.

Very Very Very Looks pretty good. No

Extremely Extremely Extremely
The whole tool is amazing in terms of
user interface. A slight improvement

could be done on the login page perhaps.

Nope. It is one of the best I have come
across till now.

Very Moderately Very User interface is good.

Moderately Moderately Very

Yes, UI is not so impressive. One has
to read user manual to operate./play with

the tool. Too many scrollbars in single page.
Graphs axis should have labels to understand
what it is for. Current graph does not convey
any anything. One has to think and figure out

himself that what exact it visualized.

Configuration page can be more
descriptive and wizard based flow

could have been better then what we
have now (everything in single page).

Extremely Very Very

I wonder whether a triagger needs to access
previous recommendations he/she made. In
that case, do you think it will be beneficial
to add a save model/configuration option?

Moderately Moderately Moderately more feedback on choices made
It would be more useful if that was a
wizard for creating a recommender.

Also guidance on what ML approach to use.

Slightly Moderately Moderately

Current User interface is very difficult to
understand by self, what each component is

actually meant to. It can be improved by
providing more details of the usage for

each of the element.
Moderately Very Very None None
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Appendix C

Quantitative Results

This appendix presents the quantitative results of the creation of an assignment recom-
mender from Section 5.2.4.

C.1 Heuristics Configurations
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Table C.1: Heuristics configurations used in assignment recommender creation by User1.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

Naive Bayes 1 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
SVM 5 / 108 9 AssignedTo Do Not Use FirstResponder Resolver FirstResponder Reporter Resolver FixedBy FixedBy AssignedTo
SVM 1 / 93 9 AssignedTo Do Not Use FixedBy Resolver AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo
SVM 1 / 61 9 AssignedTo Do Not Use FixedBy FixedBy Reporter Attachment Resolver AssignedTo AssignedTo AssignedTo

Naive Bayes 26 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
Naive Bayes 1 / 141 9 AssignedTo Do Not Use Resolver AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo

C45 1 / 141 9 AssignedTo Do Not Use Resolver AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
SVM 1 / 124 1 Resolver Do Not Use

Table C.2: Heuristics configurations used in assignment recommender creation by User2.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

SVM 10 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
Naive Bayes 15 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use

SVM 15 / 137 5 Resolver Do Not Use FixedBy FirstResponder Resolver Resolver
SVM 3 / 137 5 Resolver Do Not Use FixedBy FirstResponder Resolver Resolver

Table C.3: Heuristics configurations used in assignment recommender creation by User3.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

SVM 26 / 112 9 AssignedTo Do Not Use FixedBy Resolver FirstResponder FirstResponder FixedBy Resolver FirstResponder FirstResponder
Naive Bayes 26 / 112 9 AssignedTo Do Not Use FixedBy Resolver FirstResponder FirstResponder FixedBy Resolver FirstResponder FirstResponder
Naive Bayes 1 / 127 9 AssignedTo Do Not Use FixedBy FirstResponder FirstResponder FirstResponder FixedBy Resolver FirstResponder FirstResponder

Rules 74 / 127 9 AssignedTo Do Not Use FixedBy FirstResponder FirstResponder FirstResponder FixedBy Resolver FirstResponder FirstResponder
Naive Bayes 1 / 152 9 AssignedTo Do Not Use Resolver FirstResponder FirstResponder FirstResponder AssignedTo Resolver Resolver FirstResponder

SVM 64 / 146 9 AssignedTo Do Not Use Resolver FirstResponder FirstResponder Resolver Resolver Resolver Resolver FirstResponder
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Table C.4: Heuristics configurations used in assignment recommender creation by User4.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

Naive Bayes 49 / 73 9 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Resolver Attachment FirstResponder Resolver
C45 49 / 73 9 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Resolver Attachment FirstResponder Resolver
C45 21 / 73 9 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Resolver Attachment FirstResponder Resolver

Rules 30 / 73 9 FixedBy Do Not Use FixedBy Resolver Reporter FirstResponder Resolver Attachment FirstResponder Resolver
Rules 19 / 56 5 FixedBy Do Not Use FixedBy Resolver Reporter FirstResponder
Rules 19 / 56 5 FixedBy Do Not Use FixedBy Resolver Reporter FirstResponder

Table C.5: Heuristics configurations used in assignment recommender creation by User5.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

SVM 10 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
Naive Bayes 10 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use

C45 10 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
SVM 10 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use

Naive Bayes 10 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
SVM 20 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use

Naive Bayes 20 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
C45 20 / 130 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use

Table C.6: Heuristics configurations used in assignment recommender creation by User6.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

SVM 1 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
SVM 1 / 141 3 AssignedTo Do Not Use Resolver AssignedTo
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Table C.7: Heuristics configurations used in assignment recommender creation by User7.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

Rules 1 / 59 5 AssignedTo Do Not Use FixedBy FixedBy Reporter Attachment
SVM 1 / 64 5 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use
SVM 1 / 61 9 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use Attachment FirstResponder AssignedTo Reporter
SVM 1 / 61 9 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use Attachment FirstResponder AssignedTo Reporter

Naive Bayes 1 / 61 9 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use Attachment FirstResponder AssignedTo Reporter
C45 1 / 61 9 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use Attachment FirstResponder AssignedTo Reporter

Rules 1 / 64 5 AssignedTo Do Not Use FixedBy Resolver Reporter Attachment
Rules 1 / 64 5 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use
C45 1 / 64 5 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use
C45 1 / 83 5 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder

SVM 1 / 89 4 AssignedTo Do Not Use FixedBy Resolver Reporter
SVM 1 / 89 4 AssignedTo Do Not Use FixedBy Resolver Reporter
SVM 1 / 84 6 AssignedTo Do Not Use Resolver AssignedTo Reporter FirstResponder Attachment
SVM 1 / 64 5 AssignedTo Do Not Use FixedBy Resolver Reporter Attachment

Naive Bayes 1 / 64 5 AssignedTo Do Not Use FixedBy Resolver Attachment Reporter
Naive Bayes 1 / 61 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use
Naive Bayes 1 / 61 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use

SVM 1 / 61 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use
C45 1 / 61 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use

Rules 1 / 61 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use
SVM 1 / 61 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use

Naive Bayes 1 / 61 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use

Table C.8: Heuristics configurations used in assignment recommender creation by User8.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

Naive Bayes 1 / 117 4 AssignedTo Do Not Use Reporter AssignedTo AssignedTo

Table C.9: Heuristics configurations used in assignment recommender creation by User9.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

SVM 10 / 115 9 AssignedTo Do Not Use FixedBy Resolver Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
Naive Bayes 10 / 115 9 AssignedTo Do Not Use FixedBy Resolver Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use

C45 10 / 115 9 AssignedTo Do Not Use FixedBy Resolver Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
Rules 10 / 115 9 AssignedTo Do Not Use FixedBy Resolver Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
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Table C.10: Heuristics configurations used in assignment recommender creation by User10.

Algorithm Min./Max.
Threshold # Heuristics Other

Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

SVM 1 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
SVM 1 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
SVM 19 / 120 3 AssignedTo Do Not Use Resolver Resolver
SVM 1 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo

Naive Bayes 1 / 31 4 FixedBy Do Not Use Reporter FixedBy AssignedTo
SVM 1 / 136 6 Attachment Do Not Use AssignedTo Resolver AssignedTo AssignedTo AssignedTo
SVM 1 / 102 6 Attachment Do Not Use Resolver Resolver AssignedTo AssignedTo FirstResponder
Rules 1 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
SVM 1 / 116 8 AssignedTo Do Not Use Resolver AssignedTo AssignedTo Reporter AssignedTo AssignedTo AssignedTo
SVM 1 / 170 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo

Table C.11: Repetitive Heuristics configurations used in assignment recommender creation.

# of Times
Configuration

Used

# of Heuristics
Selected

Other
Heuristics Duplicate Fixed Worksforme Invalid Unknown Upstream Wontfix Later Moved

10 9 AssignedTo Do Not Use FixedBy FirstResponder Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
8 9 AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
7 6 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Do Not Use
4 9 AssignedTo Do Not Use FixedBy Resolver Resolver Resolver Resolver FirstResponder Do Not Use Do Not Use
4 9 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use Attachment FirstResponder AssignedTo Reporter
3 9 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder Resolver Attachment FirstResponder Resolver
3 5 AssignedTo Do Not Use FixedBy Resolver Reporter Do Not Use
2 9 AssignedTo Do Not Use FixedBy Resolver FirstResponder FirstResponder FixedBy Resolver FirstResponder FirstResponder
2 9 AssignedTo Do Not Use FixedBy FirstResponder FirstResponder FirstResponder FixedBy Resolver FirstResponder FirstResponder
2 9 AssignedTo Do Not Use Resolver AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo AssignedTo
2 5 Resolver Do Not Use FixedBy FirstResponder Resolver Resolver
2 5 FixedBy Do Not Use FixedBy Resolver Reporter FirstResponder
2 5 AssignedTo Do Not Use FixedBy Resolver Reporter Attachment
2 4 AssignedTo Do Not Use FixedBy Resolver Reporter
1 9 AssignedTo Do Not Use Resolver FirstResponder FirstResponder FirstResponder AssignedTo Resolver Resolver FirstResponder
1 9 AssignedTo Do Not Use FirstResponder Resolver FirstResponder Reporter Resolver FixedBy FixedBy AssignedTo
1 9 FixedBy Do Not Use FixedBy Resolver Reporter FirstResponder Resolver Attachment FirstResponder Resolver
1 9 AssignedTo Do Not Use Resolver FirstResponder FirstResponder Resolver Resolver Resolver Resolver FirstResponder
1 9 AssignedTo Do Not Use FixedBy Resolver AssignedTo Do Not Use AssignedTo AssignedTo AssignedTo AssignedTo
1 9 AssignedTo Do Not Use FixedBy FixedBy Reporter Attachment Resolver AssignedTo AssignedTo AssignedTo
1 8 AssignedTo Do Not Use Resolver AssignedTo AssignedTo Reporter AssignedTo AssignedTo AssignedTo
1 6 Attachment Do Not Use Resolver Resolver AssignedTo AssignedTo FirstResponder
1 6 Attachment Do Not Use AssignedTo Resolver AssignedTo AssignedTo AssignedTo
1 6 AssignedTo Do Not Use Resolver AssignedTo Reporter FirstResponder Attachment
1 5 AssignedTo Do Not Use FixedBy Resolver Reporter FirstResponder
1 5 AssignedTo Do Not Use FixedBy Resolver Attachment Reporter
1 5 AssignedTo Do Not Use FixedBy FixedBy Reporter Attachment
1 4 FixedBy Do Not Use Reporter FixedBy AssignedTo Reporter
1 4 AssignedTo Do Not Use Reporter AssignedTo AssignedTo
1 3 AssignedTo Do Not Use Resolver AssignedTo
1 3 AssignedTo Do Not Use Resolver Resolver
1 1 Resolver Do Not Use
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C.2 Precision and Recall

Figure C.1: Top 1, 3 and 5 precision and recall from all the recommendations created by
participants.
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Ethics Certificate
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